Film formation and surface renewal on a rotating spoked disk for polymer devolatilization

Junhao Wang, Hao Fu, Haibing Ding, Yufeng Qian, Zhipeng Li* (Corresponding Author), Zhengming Gao* (Corresponding Author), Jacobus Derksen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
2 Downloads (Pure)


The film flow and surface renewal of highly viscous liquid on a rotating spoked disk were investigated experimentally and numerically. In practical applications, the liquid is a polycarbonate melt with very high viscosity and Newtonian behavior at low shear rates. In the experiments, a maltose solution was used. The film thickness on the rotating disk was measured by an electrical conductivity probe. The Volume of Fluid (VOF) model combined with the sliding mesh method was used to simulate the film formation process. The simulated dimensionless film thickness and the film formation process agree well with the experimental results. The film flow and surface renewal under different operation conditions were evaluated. Gravity and viscous forces dominate the process with inertia playing a marginal role. A scraper was designed to intensify transfer processes on the film significantly.
Original languageEnglish
Pages (from-to)45-53
Number of pages9
JournalChemical Engineering Research & Design
Early online date2 Apr 2021
Publication statusPublished - Jun 2021

Bibliographical note

The financial supports from the National Natural Science Foundation of China (No.21676007) are gratefully acknowledged.


  • Devolatilization
  • Computational fluid dynamics
  • Highly viscous liquid
  • Film formation
  • Surface renewal


Dive into the research topics of 'Film formation and surface renewal on a rotating spoked disk for polymer devolatilization'. Together they form a unique fingerprint.

Cite this