Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

GBD 2019 Chronic Respiratory Diseases Collaborators

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)
2 Downloads (Pure)

Abstract

Background
Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019.
Methods
Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input.
Findings
In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively.
Interpretation
Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries.
Original languageEnglish
Article number101936
Number of pages22
JournalEClinicalMedicine
Volume59
Early online date25 Apr 2023
DOIs
Publication statusPublished - 23 May 2023

Bibliographical note

Acknowledgments
S Aljunid acknowledges the International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia and Department of Community Medicine, School of Medicine, International Medical University, Malaysia for the approval and support to participate in this research project. A Cohen was supported by the Health Effects Institute, Boston, MA, USA. D Dereje acknowledges the research team. A Douiri acknowledges support by King's Health Partners / Guyâs and St Thomas Charity MLTC Challenge Fund (grant number EIC180702) and the NIHR Applied Research Collaboration (ARC) South London at King’s College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. T Ekundayo thanks the African-German Network of Excellence in Science, the Federal Ministry of Education and Research and the Alexander von Humboldt Foundation for financial support. R Erkhembayar is partially funded by the WHO. A Fatehizadeh acknowledges support from the Department of Environmental Health Engineering of Isfahan University of Medical Sciences, Isfahan, Iran. S Gahre acknowledges the Institute of Applied Health Sciences (IAHS), School of Medicine, Medical Sciences and Nutrition (SMMSN), University of Aberdeen for their institutional support for this work. V K Gupta acknowledges funding support from NHMRC (National Health and Medical Research) Australia. R Hartono thanks IHME who provide the GBD Data. C Herteliu is partially supported by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. S Hussain was supported from Operational Programme Research, Development and Education Project, Postdoc2MUNI(No. CZ.02.2.69/0.0/0.0/18_053/0016952). BF Hwang was partially supported by China Medical University (CMU111-MF-55). M Jakovlievic declares that the serbian part of this GBD contribution was co-funded through Grant OI 175 014 of the Ministry of Education Technological Development and Science of the Republic of Serbia. T Joo acknowledges support from the National Research, Development and Innovation Office in Hungary (RRF-2.3.1-21-2022-00006, Data-Driven Health Division of National Laboratory for Health Security). N Joseph thanks the Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India for encouraging research activities. H Kandel is supported by the Kornhauser Research Fellowship at The University of Sydney. M Khan is the recipient of College of Medicine and Health Sciences research grant, Grant numbers G00003634, G00003569 and UAEU Sustainable Development Goals Grant, Grant number 1976. K Krishan acknowledges Non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. K Latief acknowledges Taipei Medical University. MC Li was supported by the National Science and Technology Council in Taiwan (NSTC 111-2410-H-003-100-SSS). G Liu was supported by a CREATE scientific fellowship from Lung Foundation Australia. T H Malihi would like to acknowledge the support and encouragement from Deanship of Scientific Research at Jouf University, Saudi Arabia to actively Participate in this project. D Malta acknowledges CNPQ - Conselho Nacional de Desenvolvimento Cientifico e Tecnologico. E Mathews is supported by a Clinical and Public Health Early Career Fellowship (grant number IA/CPHE/17/1/503345) from the DBT India Alliance/Wellcome Trust†Department of Biotechnology, India Alliance. AF A Mentis would like to acknowledge Anna Gkika for her continuous moral support during this study. L Monasta was supported by the Italian Ministry of Health, through a contribution given to the Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy. M Moniruzzaman was supported by The University of Queensland Postdoctoral Fellowship. J R Padubidri acknowledges Kasturba Medical College, Mangalore and Manipal Academy of Higher Education, Manipal for their constant support towards collaborative research. P Pedersini declares support and funding by the Italian Ministry of Health - Ricerca Corrente 2022. S Rahmani acknowledges the primary investigator for all their support. M Rodrigues acknowledges support from the Portuguese Council for Health and Environment. K E Rudd is supported by NIH/NIGMS grant 1K23GM141463-02. U Saeed acknowledges the International Center of Medical Sciences Research (ICMSR), Islamabad Pakistan. A M Samy acknowledges the support from Ain Shams University and the Egyptian Fulbright Mission Program F Thienemann is supported by the European Union (grant number RIA2017T-2004-StatinTB). X Xu is supported by Scientia Program at the University of New South Wales, Australia. This study was solely funded by the Bill & Melinda Gates Foundation. The funders of the study had no role in study design; collection, analysis, and interpretation of data; or writing of the report. The corresponding author had full access to the data and had responsibility for final submission of the manuscript.

Funding
Bill & Melinda Gates Foundation

Data Availability Statement

Data from this study are openly available in the online database of GBD 2019 as described in Methods.

Keywords

  • Asthma
  • Chronic obstructive pulmonary disease
  • Epidemiology
  • Interstitial lung disease
  • Lung disease
  • Morbidity
  • Mortality
  • Pneumoconiosis
  • Pulmonary emphysema

Fingerprint

Dive into the research topics of 'Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019'. Together they form a unique fingerprint.

Cite this