Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures

Thomas Lecocq* (Corresponding Author), Stephen P. Hicks, Koen Van Noten, Kasper van Wijk, Paula Koelemeijer, Raphael S. M. De Plaen, Frédérick Massin, Gregor Hillers, Robert E. Anthony, Maria-Theresia Apoloner, Mario Arroyo-Solórzano, Jelle D. Assink, Pinar Büyükakpınar, Andrea Cannata, Flavio Cannavo, Sebastian Carrasco, Corentin Caudron, Esteban J. Chaves, Dave Cornwell, David CraigOlivier F. C. den Ouden, Jordi Diaz, Stefanie Donner, Christos P. Evangelidis, Läslo Evers, Benoit Fauville, Gonzalo A. Fernandez, Dimitrios Giannopoulos, Steven J. Gibbons, Társilo Girona Girona, Bogdan Grecu, Marc Grunberg, György Hetényi, Anna Horleston, Adolfo Inza, Jessica C. E. Irving, Mohammadreza Jamalreyhani, Alan Kafka, Mathijs R. Koymans, Celeste R. Labedz, Eric Larose, Nathaniel J. Lindsey, Mika McKinnon, Tobias Megies, Meghan S. Miller, William Minarik, Louis Moresi, Víctor H. Márquez-Ramírez, Martin Möllhoff, Ian M Nesbitt, Shankho Niyogi, Javier Ojeda, Adrien Oth, Simon Proud, Jay Pulli, Lise Retailleau, Annukka E. Rintamäki, Claudio Satriano, Martha K. Savage, Shahar Shani-Kadmiel, Reinoud Sleeman, Efthimios Sokos, Klaus Stammler, Alexander E. Stott, Shiba Subedi, Mathilde B. Sørensen, Taka'aki Taira, Mar Tapia, Fatih Turhan, Ben van der Pluijm, Mark Vanstone, Jerome Vergne, Tommi A. T. Vuorinen, Tristram Warren, Joachim Wassermann, Han Xiao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

204 Citations (Scopus)
6 Downloads (Pure)

Abstract

Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

Original languageEnglish
Pages (from-to)1338-1343
Number of pages6
JournalScience
Volume369
Issue number6509
Early online date23 Jul 2020
DOIs
Publication statusPublished - 11 Sept 2020

Bibliographical note

Funding Information:
We sincerely thank two anonymous reviewers, T. Nissen-Meyer, and J. Slate for their comments, which have improved the manuscript. We are extremely grateful to all seismic network managers, operators, and technicians who have helped facilitate the raw global seismic dataset (24). We also kindly acknowledge all of the passionate community seismologists for running their ?home? seismometers and contributing, indirectly, to a better understanding of Earth. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. We dedicate this community-led study to all essential workers who have kept our countries going during these difficult times. Funding: P.K. was funded by a Royal Society University Research Fellowship (URF\R1\180377). P.B. and M.J. acknowledge support from the International Training Course ?Seismology and Seismic Hazard Assessment? funded by the GeoForschungsZentrum Potsdam (GFZ) and the German Federal Foreign Office through the German Humanitarian Assistance program (grant S08-60 321.50 ALL 03/19). P.B. also acknowledges financial support from the Bo?azi?i University Research Fund (BAP 15683). O.F.C.d.O acknowledges funding from a Young Investigator Grant from the Human Frontier Science Program (HFSP project RGY0072/2017). C.P.E. and E.S. acknowledge funding from the HELPOS Project ?Hellenic Plate Observing System? (MIS 5002697). L.E. and S.S.-K. acknowledge funding from a VIDI project from the Dutch Research Council (NWO project 864.14.005). G.A.F. acknowledges contributions from the Observatorio San Calixto, which is supported by the Air Force Technical Application Center (AFTAC). C.R.L. acknowledges funding from the NSF Graduate Research Fellowship Program (grant DGE?1745301). V.-H.M. and R.D.P. acknowledge support from grant CONACYT-299766. R.D.P. acknowledges support from the UNAM-DGAPA postdoctoral scholarship. J.O. acknowledges support from the Agencia Nacional de Investigaci?n y Desarrollo (Scholarship ANID-PFCHA/Doctorado Nacional/2020-21200903). S.P. acknowledges financial support from the Natural Environment Research Council (NE/R013144/1). A.E.R. acknowledges support from the K.H. Renlund foundation. M.K.S. acknowledges the New Zealand Earthquake Commission (EQC project 20796). H.X. acknowledges support from a Multidisciplinary Research on the Coronavirus and its Impacts (MRCI) grant from UC Santa Barbara. The Australian Seismometers in Schools data used in this research are supported by AuScope, enabled by the Australian Commonwealth NCRIS program. A.O. acknowledges support from the project RESIST, funded by the Belgian Federal Science Policy (contract SR/00/305) and the Luxembourg National Research Fund.

Publisher Copyright:
© 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • AUCKLAND VOLCANIC FIELD
  • POWER SPECTRA
  • OBSPY

Fingerprint

Dive into the research topics of 'Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures'. Together they form a unique fingerprint.

Cite this