TY - JOUR
T1 - Hydrogeological controls on the flow regime of an ephemeral temperate stream flowing across an alluvial fan
AU - Blackburn, Joel
AU - Comte, Jean-Christophe
AU - Foster, Gez
AU - Gibbins, Christopher
PY - 2021/4
Y1 - 2021/4
N2 - Alluvial fans often support ephemeral streams whose flow regimes and sediment dynamics are strongly controlled by fan sedimentary characteristics and interactions with shallow groundwater aquifers. The hydrogeology of such fans has most often been documented for large fans located within arid climate zones. This research focuses on a small (0.075 km2) alluvial fan situated in a temperate, high rainfall climate (the Lake District, North West England). An ephemeral stream flowing across this alluvial fan plays a key role in supplying water and sediment to the River Ehen, which is the focus of a habitat restoration initiative. This study combines high spatial resolution, near surface geophysics and outcrop data with hydrological data to characterise the hydrogeological properties of the alluvial fan. A conceptual hydrogeological model was developed to understand the hydrology across the alluvial fan and how that affects water and sediment supply to the River Ehen. The alluvial fan is composed predominantly of permeable debris flow deposits and numerous palaeochannels which may provide preferential groundwater flow paths. During streamflows, partial to full stream-aquifer connectivity occurs, especially in the distal fan where groundwater discharges back into the stream. Streamflows occur when the fan apex infiltration rate/capacity threshold of approx. 60 l/s−1 is exceeded, typically following rainfall events >9–11 mm. Understanding interactions between ephemeral streams and their underlying aquifers enables better predictions of the timing and magnitude of future flows, and in-turn, their likely impacts on the water courses into which they discharge.
AB - Alluvial fans often support ephemeral streams whose flow regimes and sediment dynamics are strongly controlled by fan sedimentary characteristics and interactions with shallow groundwater aquifers. The hydrogeology of such fans has most often been documented for large fans located within arid climate zones. This research focuses on a small (0.075 km2) alluvial fan situated in a temperate, high rainfall climate (the Lake District, North West England). An ephemeral stream flowing across this alluvial fan plays a key role in supplying water and sediment to the River Ehen, which is the focus of a habitat restoration initiative. This study combines high spatial resolution, near surface geophysics and outcrop data with hydrological data to characterise the hydrogeological properties of the alluvial fan. A conceptual hydrogeological model was developed to understand the hydrology across the alluvial fan and how that affects water and sediment supply to the River Ehen. The alluvial fan is composed predominantly of permeable debris flow deposits and numerous palaeochannels which may provide preferential groundwater flow paths. During streamflows, partial to full stream-aquifer connectivity occurs, especially in the distal fan where groundwater discharges back into the stream. Streamflows occur when the fan apex infiltration rate/capacity threshold of approx. 60 l/s−1 is exceeded, typically following rainfall events >9–11 mm. Understanding interactions between ephemeral streams and their underlying aquifers enables better predictions of the timing and magnitude of future flows, and in-turn, their likely impacts on the water courses into which they discharge.
U2 - 10.1016/j.jhydrol.2021.125994
DO - 10.1016/j.jhydrol.2021.125994
M3 - Article
SN - 0022-1694
VL - 595
JO - Journal of Hydrology
JF - Journal of Hydrology
M1 - 125994
ER -