Impact of lag information on network inference

N. Rubido, C. Masoller (Corresponding Author)

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Extracting useful information from data is a fundamental challenge across disciplines as diverse as climate, neuroscience, genetics, and ecology. In the era of “big data,” data is ubiquitous, but appropriate methods are needed for gaining reliable information from the data. In this work, we consider a complex system, composed by interacting units, and aim at inferring which elements influence each other, directly from the observed data. The only assumption about the structure of the system is that it can be modeled by a network composed by a set of N units connected with L un-weighted and un-directed links, however, the structure of the connections is not known. In this situation, the inference of the underlying network is usually done by using interdependency measures, computed from the output signals of the units. We show, using experimental data recorded from randomly coupled electronic Rössler chaotic oscillators, that the information of the lag times obtained from bivariate cross-correlation analysis can be useful to gain information about the real connectivity of the system.
Original languageEnglish
Pages (from-to)1243-1250
Number of pages8
JournalEuropean Physical Journal: Special Topics
Publication statusPublished - 12 Dec 2018


Dive into the research topics of 'Impact of lag information on network inference'. Together they form a unique fingerprint.

Cite this