Abstract
I present a very general and simple argument — based on the no-signalling theorem — showing that within the framework of the unitary Schroedinger equation it is impossible to reproduce the phenomenological description of quantum mechanical measurements (in particular the collapse of the state of the measured system) by assuming a suitable mixed initial state of the apparatus. The thrust of the argument is thus similar to that of the ‘insolubility theorems’ for the measurement problem of quantum mechanics (which, however, focus on the impossibility of reproducing the macroscopic measurement results). Although I believe this form of the argument is new, I argue it is essentially a variant of Einstein’s reasoning in the context of the EPR paradox — which is thereby illuminated from a new angle.
Original language | English |
---|---|
Pages (from-to) | 87-100 |
Number of pages | 14 |
Journal | European Journal for Philosophy of Science |
Volume | 3 |
Issue number | 1 |
Early online date | 26 Jun 2012 |
DOIs | |
Publication status | Published - Jan 2013 |
Bibliographical note
I wish to thank in particular Arthur Fine for very perceptive comments on a previous draft of this paper. Many thanks also to Theo Nieuwenhuizen for inspiration, to Max Schlosshauer for correspondence, to two anonymous referees for shrewd observations, and to audiences at Aberdeen, Cagliari and Oxford (in particular to Harvey Brown, Elise Crull, Simon Saunders, Chris Timpson and David Wallace) for stimulating questions. This paper was written during my tenure of a Leverhulme Grant on ‘The Einstein Paradox’: The Debate on Nonlocality and Incompleteness in 1935 (Project Grant nr. F/00 152/AN), and it was revised for publication during my tenure of a Visiting Professorship in the Doctoral School of Philosophy and Epistemology, University of Cagliari (Contract nr. 268/21647).Keywords
- quantum mechanics
- measurment problem
- insolubility theorems
- EPR argument