Long-term effects of climate change on vegetation and carbon dynamics in peat bogs

Monique M.P.D. Heijmans, Dmitri Mauquoy, Bas Van Geel, Frank Berendse

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)


Questions: What are the long-term effects of climate change on the plant species composition and carbon sequestration in peat bogs?

Methods: We developed a bog ecosystem model that includes vegetation, carbon, nitrogen and water dynamics. Two groups of vascular plant species and three groups of Sphagnum species compete with each other for light and nitrogen. The model was tested by comparing the outcome with long-term historic vegetation changes in peat cores from Denmark and England. A climate scenario was used to analyse the future effects of atmospheric CO2, temperature and precipitation.

Results: The main changes in the species composition since 1766 were simulated by the model. Simulations for a future warmer, and slightly wetter, climate with doubling CO2 concentration suggest that little will change in species composition, due to the contrasting effects of increasing temperatures ( favouring vascular plants) and CO2 ( favouring Sphagnum). Further analysis of the effects of temperature showed that simulated carbon sequestration is negatively related to vascular plant expansion. Model results show that increasing temperatures may still increase carbon accumulation at cool, low N deposition sites, but decrease carbon accumulation at high N deposition sites.

Conclusions: Our results show that the effects of temperature, precipitation, N-deposition and atmospheric CO2 are not straightforward, but interactions between these components of global change exist. These interactions are the result of changes in vegetation composition. When analysing long-term effects of global change, vegetation changes should be taken into account and predictions should not be based on temperature increase alone.

Original languageEnglish
Pages (from-to)307-320
Number of pages14
JournalJournal of Vegetation Science
Issue number3
Publication statusPublished - Jun 2008


  • carbon cycling
  • competition
  • ecosystem model
  • global change
  • Nucom-bog
  • ombrotrophic peatland
  • palaeoecology
  • species effect
  • sphagnum
  • vegetation composition
  • increased nitrogen deposition
  • increased N deposition
  • vulgaris L hull
  • vascular plants
  • sphagnum bogs
  • British-Isles
  • Northern peatlands
  • biological flora
  • Boreal peatlands
  • solar-activity


Dive into the research topics of 'Long-term effects of climate change on vegetation and carbon dynamics in peat bogs'. Together they form a unique fingerprint.

Cite this