Martian Fluvial Conglomerates at Gale Crater

R. M. E. Williams, J. P. Grotzinger, W. E. Dietrich, S. Gupta, D. Y. Sumner, R. C. Wiens, N. Mangold, M. C. Malin, K. S. Edgett, S. Maurice, O. Forni, O. Gasnault, A. Ollila, H. E. Newsom, G. Dromart, M. C. Palucis, R. A. Yingst, R. B. Anderson, K. E. Herkenhoff, S. Le MouelicW. Goetz, M. B. Madsen, A. Koefoed, J. K. Jensen, J. C. Bridges, S. P. Schwenzer, K. W. Lewis, K. M. Stack, D. Rubin, L. C. Kah, J. F. Bell, J. D. Farmer, R. Sullivan, T. Van Beek, D. L. Blaney, O. Pariser, R. G. Deen, Mars Science Laboratory Science Team

Research output: Contribution to journalArticlepeer-review

317 Citations (Scopus)


Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.
Original languageEnglish
Pages (from-to)1068-1072
Issue number6136
Publication statusPublished - 31 May 2013

Bibliographical note

We thank K. Tanaka and L. Kestay (USGS-Flagstaff) and four anonymous referees for constructive reviews of this manuscript. This research was carried out for the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA under the Mars Program Office, including JPL contracts 1449884 (R.M.E.W.) and 1273887 (Malin Space Science Systems). Work in France was carried out with funding from the Centre National d'Etudes Spatiales. Work in the UK was funded by the UK Space Agency. Work in Denmark was funded by the Danish Council for Independent Research/Natural Sciences (FNU grants 12-127126 and 11-107019) and the TICRA Foundation. Work in Germany was partly funded by Deutsche Forschungsgemeinschaft grant GO 2288/1-1. Data in this manuscript are available from the NASA Planetary Data System. This is PSI contribution 603.


Dive into the research topics of 'Martian Fluvial Conglomerates at Gale Crater'. Together they form a unique fingerprint.

Cite this