Mathematically guided approaches to distinguish models of periodic patterning

Tom W. Hiscock, Sean G. Megason*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)


How periodic patterns are generatedisan open question. A number of mechanisms have been proposed – most famously, Turing’s reaction-diffusion model. However, many theoretical and experimental studies focus on the Turing mechanism while ignoring other possible mechanisms. Here, we use a general model of periodic patterning to show that different types of mechanism (molecular, cellular, mechanical) can generate qualitatively similar final patterns. Observation of final patterns is therefore not sufficient to favour one mechanism over others. However, we propose that a mathematical approach can help to guide the design of experiments that can distinguish between different mechanisms, and illustrate the potential value of this approach with specific biological examples.

Original languageEnglish
Pages (from-to)409-419
Number of pages11
JournalDevelopment (Cambridge)
Issue number3
Publication statusPublished - 1 Feb 2015
Externally publishedYes

Bibliographical note

We thank Fengzhu Xiong, Ian Swinburne, Allon Klein, Jeremy Gunawardena, Charlotte Strandkvist, José Reyes, Max Darnell and three anonymous reviewers for helpful comments and discussions.

This work is supported by the National Institutes of Health [grant DC010791]. T.W.H. is also supported by the Herchel Smith Graduate Fellowship. Deposited in PMC for release after 12 months.


  • Mathematical biology
  • Pattern formation
  • Periodic patterning
  • Pigment pattern
  • Reaction-diffusion
  • Turing


Dive into the research topics of 'Mathematically guided approaches to distinguish models of periodic patterning'. Together they form a unique fingerprint.

Cite this