Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?

Marcel Reuter, Nicholas J Hayward, Susan S Black, Samantha Miller, David T F Dryden, Ian R Booth

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
11 Downloads (Pure)


Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.
Original languageEnglish
Article number20130850
Number of pages9
JournalJournal of the Royal Society Interface
Issue number91
Early online date20 Nov 2013
Publication statusPublished - Feb 2014


  • mechanosensitive channels
  • (bacterial) cell wall
  • bacterial stress response
  • optical tweezers
  • microfluidics
  • fluorescence-activated cell sorting


Dive into the research topics of 'Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?'. Together they form a unique fingerprint.

Cite this