Multi-porous extension of anisotropic poroelasticity: consolidation and related coefficients

Filip Adamus* (Corresponding Author), David Healy, Philip G. Meredith, Thomas Mitchell, Ashley Sesnic

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We propose the generalisation of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi-static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time-dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple-porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.
Original languageEnglish
Number of pages28
JournalInternational Journal for Numerical and Analytical Methods in Geomechanics
Early online date18 Mar 2024
DOIs
Publication statusE-pub ahead of print - 18 Mar 2024

Bibliographical note

Acknowledgements
This research was supported financially by the NERC grant: “Quantifying the Anisotropy of Poroelasticity in Stressed Rock”, NE/N007826/1 and NE/T00780X/1

Data Availability Statement

Data availability
The codes used for the numerical simulations in Section 7 of this study are freely available at Adamus et al. (2023b) via https://doi.org/10.5281/zenodo.8001566.
The aforementioned codes are written as Matlab scripts and are contained in a folder named “triple-porosity”. Our folder works as a module dependent on MRST; it must be integrated with this free open-source software available to download via https://www.sintef.no/projectweb/mrst/. See readme.txt inside the folder for more information.

Keywords

  • Anisotropy
  • Fractures
  • Multiple-permeability
  • Multiple-porosity
  • Poroelasticity
  • rock mechanics

Fingerprint

Dive into the research topics of 'Multi-porous extension of anisotropic poroelasticity: consolidation and related coefficients'. Together they form a unique fingerprint.

Cite this