On Distance Preserving and Sequentially Distance Preserving Graphs

Jason P Smith, Emad Zahedi

Research output: Working paper

6 Downloads (Pure)


A graph $H$ is an \emph{isometric} subgraph of $G$ if $d_H(u,v)= d_G(u,v)$, for every pair~$u,v\in V(H)$. A graph is \emph{distance preserving} if it has an isometric subgraph of every possible order. A graph is \emph{sequentially distance preserving} if its vertices can be ordered such that deleting the first $i$ vertices results in an isometric subgraph, for all $i\ge1$. We give an equivalent condition to sequentially distance preserving based upon simplicial orderings. Using this condition, we prove that if a graph does not contain any induced cycles of length~$5$ or greater, then it is sequentially distance preserving and thus distance preserving. Next we consider the distance preserving property on graphs with a cut vertex. Finally, we define a family of non-distance preserving graphs constructed from cycles.
Original languageEnglish
Publication statusPublished - 17 Jan 2017


  • cs.DM
  • cs.SI
  • math.CO


Dive into the research topics of 'On Distance Preserving and Sequentially Distance Preserving Graphs'. Together they form a unique fingerprint.

Cite this