On the existence of orders in semisimple Hopf algebras

Juan Cuadra, Ehud Meir

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
10 Downloads (Pure)


We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfel'd twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability of such Hopf algebras over number rings. We also prove that a complex semisimple Hopf algebra satisfies Kaplansky's sixth conjecture if and only if it admits a weak order, in the sense of Rumynin and Lorenz, over the integers.
Original languageEnglish
Pages (from-to)2547-2562
Number of pages16
JournalTransactions of the American Mathematical Society
Issue number4
Early online date20 Aug 2015
Publication statusPublished - Apr 2016

Bibliographical note

The first author was supported by the projects MTM2011-27090 from MICINN
and FEDER and by the research group FQM0211 from Junta de Andalucıa. The second author was supported by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation.
The authors would like to thank Dmitriy Rumynin and Martin Lorenz for bring-
ing to their attention the notion of weak order, Cesar Galindo for pointing out that these examples were already discussed in [8], and Yevgenia Kashina and Sonia Na-tale for useful discussions on the classification of low dimensional semisimple Hopf algebras.


Dive into the research topics of 'On the existence of orders in semisimple Hopf algebras'. Together they form a unique fingerprint.

Cite this