Optimizing controllability of complex networks by minimum structural perturbations

Wen-Xu Wang, Xuan Ni, Ying-Cheng Lai, Celso Grebogi

Research output: Contribution to journalArticlepeer-review

221 Citations (Scopus)


To drive a large, complex, networked dynamical system toward some desired state using as few external signals as possible is a fundamental issue in the emerging field of controlling complex networks. Optimal control is referred to the situation where such a network can be fully controlled using only one driving signal. We propose a general approach to optimizing the controllability of complex networks by judiciously perturbing the network structure. The principle of our perturbation method is validated theoretically and demonstrated numerically for homogeneous and heterogeneous random networks and for different types of real networks as well. The applicability of our method is discussed in terms of the relative costs of establishing links and imposing external controllers. Besides the practical usage of our approach, its implementation elucidates, interestingly, the intricate relationship between certain structural properties of the network and its controllability.

Original languageEnglish
Article number026115
Number of pages5
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Issue number2
Publication statusPublished - 22 Feb 2012


Dive into the research topics of 'Optimizing controllability of complex networks by minimum structural perturbations'. Together they form a unique fingerprint.

Cite this