Polyhedral products over finite posets

Daisuke Kishimoto, Ran Levi

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Polyhedral products were defined by Bahri, Bendersky, Cohen, and Gitler, to be spaces obtained as unions of certain product spaces indexed by the simplices of an abstract simplicial complex. In this paper, we give a very general homotopy theoretic construction of polyhedral products over arbitrary pointed posets.We show that under certain restrictions on the posetP,which include all known cases, the cohomology of the resulting spaces can be computed as an inverse limit over P of the cohomology of the building blocks. This motivates the definition of an analogous algebraic construction - the polyhedral tensor product.We show that for a large family of posets, the cohomology of the polyhedral product is given by the polyhedral tensor product.We then restrict attention to polyhedral posets, a family of posets that includes face posets of simplicial complexes, and simplicial posets, as well as many others.We define the Stanley-Reisner ring of a polyhedral poset and showthat, as in the classical cases, these rings occur as the cohomology of certain polyhedral products over the poset in question. For any pointed poset P, we construct a simplicial poset s(P), and show that if P is a polyhedral poset, then polyhedral products over P coincide up to homotopy with the corresponding polyhedral products over s(P).

Original languageEnglish
Pages (from-to)615-654
Number of pages40
JournalKyoto Journal of Mathematics
Issue number3
Publication statusPublished - 1 Sept 2022

Bibliographical note

Acknowledgments. Daisuke Kishimoto was partly supported by Japan Society for the Promotion of Science KAKENHI grant 17K05248. Ran Levi was partly supported by Engineering and Physical Sciences Research Council grant EP/P025072/1. The authors are grateful to the University of Kyoto and the University of Aberdeen for their kind hospitality.


  • Cohomology
  • finite posets
  • higher limits
  • polyhedral products
  • Stanley–Reisner rings


Dive into the research topics of 'Polyhedral products over finite posets'. Together they form a unique fingerprint.

Cite this