Predictable hydrodynamic conditions explain temporal variations in the density of benthic foraging seabirds in a tidal stream environment

James J Waggitt, Pierre W Cazenave, Ricardo Torres, Benjamin J Williamson, Beth E Scott

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)
14 Downloads (Pure)

Abstract

Tidal stream turbines could have several direct impacts upon pursuit-diving seabirds foraging within tidal stream environments (mean horizontal current speeds > 2 ms−1), including collisions and displacement. Understanding how foraging seabirds respond to temporally variable but predictable hydrodynamic conditions immediately around devices could identify when interactions between seabirds and devices are most likely to occur; information which would quantify the magnitude of potential impacts, and also facilitate the development of suitable mitigation measures. This study uses shore-based observational surveys and Finite Volume Community Ocean Model outputs to test whether temporally predictable hydrodynamic conditions (horizontal current speeds, water elevation, turbulence) influenced the density of foraging black guillemots Cepphus grylle and European shags Phalacrocorax aristotelis in a tidal stream environment in Orkney, United Kingdom, during the breeding season. These species are particularly vulnerable to interactions with devices due to their tendency to exploit benthic and epi-benthic prey on or near the seabed. The density of both species decreased as a function of horizontal current speeds, whereas the density of black guillemots also decreased as a function of water elevation. These relationships could be linked to higher energetic costs of dives in particularly fast horizontal current speeds (>3 ms−1) and deeper water. Therefore, interactions between these species and moving components seem unlikely at particularly high horizontal current speeds. Combining this information, with that on the rotation rates of moving components at lower horizontal current speeds, could be used to assess collision risk in this site during breeding seasons. It is also likely that moderating any device operation during both lowest water elevation and lowest horizontal current speeds could reduce the risk of collisions for these species in this site during this season. The approaches used in this study could have useful applications within Environmental Impact Assessments, and should be considered when assessing and mitigating negative impacts from specific devices within development sites.
Original languageEnglish
Pages (from-to)2677-2686
Number of pages10
JournalICES Journal of Marine Science
Volume73
Issue number10
Early online date1 Jul 2016
DOIs
Publication statusPublished - Nov 2016

Bibliographical note

VC International Council for the Exploration of the Sea 2016.

James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Shore-based surveys were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM was funded by a NERC grant (NE/J004316/1). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime and Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Ian Davies at Marine Scotland Science; Gail Davoren, Shaun Fraser, Pauline Goulet, Alex Robbins and Helen Wade for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Jenny Campbell and the Cockram family for assistance during fieldwork.

Keywords

  • tidal stream turbines
  • environmental impacts
  • Cepphus grylle
  • Phalacrocorax aristotelis
  • foraging ecology
  • FVCOM
  • shore-based surveys

Fingerprint

Dive into the research topics of 'Predictable hydrodynamic conditions explain temporal variations in the density of benthic foraging seabirds in a tidal stream environment'. Together they form a unique fingerprint.

Cite this