Abstract
The mechanical response of ceramic matrix composites depends critically on the slip along the matrix–fiber interface, which is usually achieved with thin coatings on the fibers. Environmental attack of such coatings (enabled by ingress of reactants through matrix cracks) often leads to significant degradation, through the removal of the coating via volatilization and oxidation of exposed SiC surfaces. The extent of the volatilization region extending from the matrix crack plane (i.e., recession length) is strongly coupled to the formation of oxide, which ultimately fills open gaps and arrests further reactions. This paper presents models to quantify these effects over a broad range of environmental conditions, coating thickness, and matrix crack opening. Analytical solutions are presented for the time to close recession gaps via oxidation, and the associated terminal recession lengths obtained near free surfaces. A broad parameter study illustrates that recession behaviors are controlled by a competition between volatilization and oxidation rates. As such, the extent of recession is highly sensitive to water vapor and temperature, providing an explanation for disparate observations of recession under seemingly similar conditions. The extent of recession in the interior of composites is also illustrated, using a straightforward reaction-transport model. Recession lengths decay rapidly away from the free surface, with the extent of recession penetration scaling with maximum recession at the free surface.
Original language | English |
---|---|
Pages (from-to) | 495-511 |
Number of pages | 14 |
Journal | Journal of the American Ceramic Society |
Volume | 105 |
Issue number | 1 |
Early online date | 24 Aug 2021 |
DOIs | |
Publication status | Published - 1 Jan 2022 |
Bibliographical note
Funding Information:The authors gratefully acknowledges the support provided by the Office of Naval Research and IHI, Incorporated (Japan). VEC gratefully acknowledges the support provided by the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.
Keywords
- boron nitride recession
- ceramic matrix composites
- oxidation resistance
- silicon carbide
- water vapor