Regulation of release factor expression using a translational negative feedback loop: a systems analysis

Russell Betney, Eric de Silva, Christina Mertens, Yvonne Knox, J Krishnan, Ian Stansfield

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


The essential eukaryote release factor eRF1, encoded by the yeast SUP45 gene, recognizes stop codons during ribosomal translation. SUP45 nonsense alleles are, however, viable due to the establishment of feedback-regulated readthrough of the premature termination codon; reductions in full-length eRF1 promote tRNA-mediated stop codon readthrough, which, in turn, drives partial production of full-length eRF1. A deterministic mathematical model of this eRF1 feedback loop was developed using a staged increase in model complexity. Model predictions matched the experimental observation that strains carrying the mutant SUQ5 tRNA (a weak UAA suppressor) in combination with any of the tested sup45(UAA) nonsense alleles exhibit threefold more stop codon readthrough than that of an SUQ5 yeast strain. The model also successfully predicted that eRF1 feedback control in an SUQ5 sup45(UAA) mutant would resist, but not completely prevent, imposed changes in eRF1 expression. In these experiments, the introduction of a plasmid-borne SUQ5 copy into a sup45(UAA) SUQ5 mutant directed additional readthrough and full-length eRF1 expression, despite feedback. Secondly, induction of additional sup45(UAA) mRNA expression in a sup45(UAA) SUQ5 strain also directed increased full-length eRF1 expression. The autogenous sup45 control mechanism therefore acts not to precisely control eRF1 expression, but rather as a damping mechanism that only partially resists changes in release factor expression level. The validated model predicts that the degree of feedback damping (i.e., control precision) is proportional to eRF1 affinity for the premature stop codon. The validated model represents an important tool to analyze this and other translational negative feedback loops.
Original languageEnglish
Pages (from-to)2320-2334
Number of pages15
Issue number12
Early online date25 Oct 2012
Publication statusPublished - Dec 2012


Dive into the research topics of 'Regulation of release factor expression using a translational negative feedback loop: a systems analysis'. Together they form a unique fingerprint.

Cite this