Abstract
Background: The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance of mannan in the host-pathogen interaction, immune recognition and virulence. Here we report the first analysis of the MNN1 gene family, which contains six members predicted to act as α-1,3 mannosyltransferases in the terminal stages of glycosylation.
Findings: We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitr o and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14 Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14 Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model.
Conclusion: Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence.
Findings: We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitr o and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14 Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14 Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model.
Conclusion: Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence.
Original language | English |
---|---|
Article number | 294 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | BMC Research Notes |
Volume | 6 |
DOIs | |
Publication status | Published - 26 Jul 2013 |
Bibliographical note
AcknowledgementsThis work was supported by a Wellcome Trust Programme grant (080088) to NG, FO and AB and by a FP7-2007-2013 grant agreement (HEALTH-F2- 2010-260338–ALLFUN) and BBSRC SABR (CRISP) award. MGN was supported by a Vici grant of the Netherlands Organization for Scientific Research. JC was supported by a UK Biotechnology and Biological Sciences Research Council project grant (BB/F009232/1) to SB.
Keywords
- Candida albicans
- Cell wall
- Glycosylation
- Mannoproteins
- MNN1
- Virulence