Abstract
Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25-30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons.
Original language | English |
---|---|
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Journal of Neurobiology |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 1995 |
Keywords
- Animals
- Axons
- Cells, Cultured
- Chick Embryo
- Ganglia, Spinal
- Microscopy, Video
- Nerve Regeneration
- Neurites
- Neurons, Afferent
- Poisson Distribution
- Time Factors