Abstract
The synthetic-volumetric method is used for rapidly measuring solubilities of sparingly-soluble gases in monoethylene glycol and in four ionic liquids. Known molar quantities of solute and solvent are charged into an equilibrium vessel. Measured quantities at equilibrium include: temperature, pressure, quantities of fluids, and volumes of the gas and liquid phases in the equilibrium vessel. These measurements enable calculation of equilibrium compositions using material balances. No sampling or chemical analyses are required.
Solubilities are reported for carbon dioxide, krypton, oxygen, and hydrogen in monoethylene glycol, l-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], l-n-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf2N], or 1-ethyl-3-methylimidazolium acetate [EMIM][AC]. Solubilities were measured over the temperature range (298 to 355) K and for pressures up to about 7 MPa using two different pieces of equipment, both based on the volumetric method: a low-pressure glass apparatus and a high-pressure stainless-steel apparatus. Special emphasis is given to experimental reliability to assure consistent data.
Solubilities are reported for carbon dioxide, krypton, oxygen, and hydrogen in monoethylene glycol, l-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], l-n-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf2N], or 1-ethyl-3-methylimidazolium acetate [EMIM][AC]. Solubilities were measured over the temperature range (298 to 355) K and for pressures up to about 7 MPa using two different pieces of equipment, both based on the volumetric method: a low-pressure glass apparatus and a high-pressure stainless-steel apparatus. Special emphasis is given to experimental reliability to assure consistent data.
Original language | English |
---|---|
Pages (from-to) | 88-94 |
Number of pages | 7 |
Journal | The Journal of Chemical Thermodynamics |
Volume | 63 |
Early online date | 21 Mar 2013 |
DOIs | |
Publication status | Published - Aug 2013 |
Bibliographical note
For financial support, the authors are grateful to the Lawrence–Berkeley National Laboratory and to the Energy Biosciences Institute and to Prof. Alexis Bell and coworkers for general assistance. We much appreciate fruitful discussions with Dr. Sasisanker Padmanabhan and experimental assistance of Mr. Brian Yoo. We thank Mr. Jim Breen and Mr. Eric Granlund (University of California, Berkeley, College of Chemistry Workshops) for technical advice.Keywords
- Synthetic volumetric method
- Solubilities of gases
- Ionic liquids
- Experimental methods
- Monoethylene glycol