Stability of attractors formed by inertial particles in open chaotic flows

Younghae Do, Ying-Cheng Lai

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


Particles having finite mass and size advected in open chaotic flows can form attractors behind structures. Depending on the system parameters, the attractors can be chaotic or nonchaotic. But, how robust are these attractors? In particular, will small, random perturbations destroy the attractors? Here, we address this question by utilizing a prototype flow system: a cylinder in a two-dimensional incompressible flow, behind which the von Karman vortex street forms. We find that attractors formed by inertial particles behind the cylinder are fragile in that they can be destroyed by small, additive noise. However, the resulting chaotic transient can be superpersistent in the sense that its lifetime obeys an exponential-like scaling law with the noise amplitude, where the exponent in the exponential dependence can be large for small noise. This happens regardless of the nature of the original attractor, chaotic or nonchaotic. We present numerical evidence and a theory to explain this phenomenon. Our finding makes direct experimental observation of superpersistent chaotic transients feasible and it also has implications for problems of current concern such as the transport and trapping of chemically or biologically active particles in large-scale flows.

Original languageEnglish
Article number036203
Number of pages10
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Issue number3
Publication statusPublished - 13 Sept 2004


  • turbulent boundary layers
  • intermediate region
  • transients
  • systems
  • motion
  • perturbations
  • bifurcation
  • dynamics
  • equation
  • sphere


Dive into the research topics of 'Stability of attractors formed by inertial particles in open chaotic flows'. Together they form a unique fingerprint.

Cite this