Stability properties of nonhyperbolic chaotic attractors with respect to noise

S Kraut, C Grebogi

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


We study local and global stability of nonhyperbolic chaotic attractors contaminated by noise. The former is given by the maximum distance of a noisy trajectory from the noisefree attractor, while the latter is provided by the minimal escape energy necessary to leave the basin of attraction, calculated with the Hamiltonian theory of large fluctuations. We establish the important and counterintuitive result that both concepts may be opposed to each other. Even when one attractor is globally more stable than another one, it can be locally less stable. Our results are exemplified with the Holmes map, for two different sets of parameter, and with a juxtaposition of the Holmes and the Ikeda maps. Finally, the experimental relevance of these findings is pointed out.

Original languageEnglish
Article number250603
Number of pages4
JournalPhysical Review Letters
Issue number25
Publication statusPublished - 17 Dec 2004


  • induced escape
  • time-series
  • chemical-reactions
  • dynamical-systems
  • ring cavity
  • reduction
  • fluctuations
  • Kramers
  • models
  • driven


Dive into the research topics of 'Stability properties of nonhyperbolic chaotic attractors with respect to noise'. Together they form a unique fingerprint.

Cite this