Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice

Garima Dixit, Amit Pal Singh, Amit Kumar Kumar, Pradyumna Kumar Singh, Smita Kumar, Sanjay Dwivedi, Prabodh Kumar Trivedi, Vivek Pandey, Gareth John Norton, Om Parkash Dhankher, Rudra Deo Tripathi

Research output: Contribution to journalArticlepeer-review

167 Citations (Scopus)


Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5 mM), normal sulfur (3.5 mM) and high sulfur (5.0 mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain.
Original languageEnglish
Pages (from-to)241-251
Number of pages11
JournalJournal of Hazardous Materials
Early online date5 Jun 2015
Publication statusPublished - 15 Nov 2015

Bibliographical note

Acknowledgements: The authors are thankful to Director, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow for the facilities and for the financial support from the network projects (CSIR-INDEPTH and NWP-0111), New Delhi, India. The authors are grateful to the Joint Director, Rice Research Station (RRS), Chinsurah to provide rice germplasm. GD is thankful to Council of Scientific and Industrial Research, New Delhi, India for the award of Junior/Senior Research Fellowship and Academy of Scientific and Innovative Research (AcSIR) for her Ph.D. registration.


  • antioxidant enzymes
  • arsenic
  • rice
  • sulfate and arsenic transporters
  • sulfur
  • thiol metabolism


Dive into the research topics of 'Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice'. Together they form a unique fingerprint.

Cite this