Abstract
We propose a new pipeline to facilitate deep learning at scale for agriculture and food robotics, and exemplify it using strawberry tabletop. We use this multimodal, autonomously selfcollected, distributed dataset for predicting strawberry tabletop yield, aiming at informing both agronomists and creating a robotic attention system. We call this system the augmented agronomist, which is designed for agronomy forecasting, and support, maximizing the human time and awareness to areas most critical. This project seeks to be relatively protective of both its neural networks, and its data, to prevent things such as adversarial attacks, or sensitive method leaks from damaging the future growers livelihoods. Toward this end this project shall take advantage of, and further our existing distributed deep- learning framework Nemesyst. The augmented agronomist will take advantage of our existing strawberry tabletop in our Riseholme campus, and will use the generalized robotics platform Thorvald for the autonomous data collection.
Original language | English |
---|---|
Number of pages | 3 |
DOIs | |
Publication status | Published - 17 Apr 2020 |
Event | 3rd UK Robotics & Autonomous Systems Conference (UK-RAS) - Duration: 17 Apr 2020 → 17 Apr 2020 https://www.ukras.org/news-and-events/uk-ras/ |
Conference
Conference | 3rd UK Robotics & Autonomous Systems Conference (UK-RAS) |
---|---|
Period | 17/04/20 → 17/04/20 |
Internet address |
Keywords
- Machine Learning
- Robotics
- AGRICULTURE