The Electronic and Magnetic Properties of Cation Ordered Sr2Mn2.23Cr0.77As2O2

Gaynor B. Lawrence, Eve J. Wildman, Gavin B. G. Stenning, Clemens Ritter, Francois Fauth, Abbie C. McLaughlin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
2 Downloads (Pure)


Several different mechanisms of magnetoresistance (MR) have been observed in 1111 LnMnAsO1-xFx oxypnictides (Ln = lanthanide) as a result of magnetic coupling between the Mn and Ln. Such phases also exhibit interesting magnetic phase transitions upon cooling. Sr2Mn2CrAs2O2 has been synthesised in order to investigate if it’s possible to observe MR and/or magnetic phase transitions as a result of magnetic coupling between the Mn and Cr. Sr2Mn2CrAs2O2 crystallises with the I4/mmm tetragonal space group containing alternating MO22- and M’2As22- layers and neutron diffraction results demonstrate that the actual stoichiometry is Sr2Mn2.23Cr0.77As2O2. Cation order is present between Mn and Cr, with Cr predominantly occupying the square planar MO22- site. Below 410 K the magnetic moments of the Mn/Cr ions in the M’2As22- sublattice exhibit G-type antiferromagnetic order. The Mn/Cr moments within the MO22- layer order below 167 K with a K2NiF4-type- antiferromagnetic structure which simultaneously induces a spin-flip of the magnetic moments in the M’2As22- layers from a G- to C-type antiferromagnetic arrangement. The results demonstrate that the superexchange interactions are finely balanced in Sr2Mn2.23Cr0.77As2O2. Sr2Mn2.23Cr0.77As2O2 is semiconducting and there is no evidence of MR.
Original languageEnglish
Pages (from-to)7553-7560
Number of pages8
JournalInorganic Chemistry
Issue number11
Early online date20 May 2020
Publication statusPublished - 1 Jun 2020

Bibliographical note


This research is supported by the EPSRC (research grant EP/L002493/1). We also acknowledge the UK Science and Technology Facilities Council (STFC) for provision of beam time at the ILL.


  • BA


Dive into the research topics of 'The Electronic and Magnetic Properties of Cation Ordered Sr2Mn2.23Cr0.77As2O2'. Together they form a unique fingerprint.

Cite this