Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy

Hui Zhou, Xiaodong Zeng, Anguo Li, Wenyi Zhou, Lin Tang, Wenbo Hu, Quli Fan, Xianli Meng, Hai Deng, Lian Duan, Yanqin Li, Zixin Deng, Xuechuan Hong* (Corresponding Author), Yuling Xiao* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

173 Citations (Scopus)
6 Downloads (Pure)

Abstract

NIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. To date, few small-molecule NIR-II fluorophores have been discovered with donor-acceptor-donor (D-A-D) or symmetrical structures, and upconversion-mitochondria-targeted NIR-II dyes have not been reported. Herein, we report development of D-A type thiopyrylium-based NIR-II fluorophores with frequency upconversion luminescence (FUCL) at ~580 nm upon excitation at ~850 nm. H4-PEG-PT can not only quickly and effectively image mitochondria in live or fixed osteosarcoma cells with subcellular resolution at 1 nM, but also efficiently convert optical energy into heat, achieving mitochondria-targeted photothermal cancer therapy without ROS effects. H4-PEG-PT has been further evaluated in vivo and exhibited strong tumor uptake, specific NIR-II signals with high spatial and temporal resolution, and remarkable NIR-II image-guided photothermal therapy. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency.
Original languageEnglish
Article number6183
Number of pages14
JournalNature Communications
Volume11
DOIs
Publication statusPublished - 3 Dec 2020

Bibliographical note

Acknowledgements:
The work was supported by the National Key R&D Program of China (2020YFA0908800), NSFC (81773674, 81573383), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), Hubei Province Scientific and Technical Innovation Key Project, National Natural Science Foundation of Hubei Province (2017CFA024, 2017CFB711), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Tibet Autonomous Region Science and Technology Plan Project Key Project (XZ201901-GB-11), the Local Development Funds of Science and Technology Department of Tibet (XZ202001YD0028C), Project First-Class Disciplines Development Supported by Chengdu University of Traditional Chinese Medicine (CZYJC1903), Health Commission of Hubei Province Scientific Research Project (WJ2019M177, WJ2019M178), the China Scholarship Council, and the Fundamental Research Funds for the Central Universities.

Keywords

  • fluorescent probes
  • Imaging studies
  • Materials chemistry

Fingerprint

Dive into the research topics of 'Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy'. Together they form a unique fingerprint.

Cite this