A flexible deep learning crater detection scheme using Segment Anything Model (SAM)

Iraklis Giannakis* (Corresponding Author), Anshuman Bhardwaj, Lydia Sam, Georgios Leontidis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
4 Downloads (Pure)

Abstract

Craters are one of the most important morphological features in planetary exploration. To that extent, detecting, mapping and counting craters is a mainstream process in planetary science, done primarily manually, which is a very laborious, time-consuming and inconsistent process. Recently, machine learning (ML) and computer vision have been successfully applied for both detecting craters and estimating their size. Existing ML models for automated crater detection have been trained in specific types of data e.g. digital elevation model (DEM), images and associated metadata from orbiters such as the Lunar Reconnaissance Orbiter Camera (LROC) etc.. Due to that, each of the resulting ML schemes is applicable and reliable only to the type of data used during the training process. Data from different sources, angles and setups can compromise the reliability of these ML schemes. In this paper we present a flexible crater detection scheme that is based on the recently proposed Segment Anything Model (SAM) from META AI. SAM is a prompt-able segmentation system with zero-shot generalization to unfamiliar objects and images without the need for additional training. Using SAM, without additional training and fine-tuning, we can successfully identify crater-looking objects in various types of data (e,g, raw satellite images Level-1 and 2 products, DEMs etc.) for different setups (e.g. Lunar, Mars) and different capturing angles. Moreover, using shape indexes, we only keep the segmentation masks of crater-like features. These masks are subsequently fitted with a circle or an ellipse, recovering both the location and the size/geometry of the detected craters.
Original languageEnglish
Article number115797
Number of pages8
JournalIcarus
Volume408
Early online date23 Sept 2023
DOIs
Publication statusPublished - 15 Jan 2024

Data Availability Statement

Data will be made available on request.

Keywords

  • terrestrial planets
  • computer vision
  • planetary science
  • Segmentation
  • Segment Anthing Model
  • SAM
  • Crater detection
  • machine learning
  • AI

Fingerprint

Dive into the research topics of 'A flexible deep learning crater detection scheme using Segment Anything Model (SAM)'. Together they form a unique fingerprint.

Cite this