Abstract
The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation; with tPA-mediated lysis more efficient than uPA-mediated lysis. Fluorescently-labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative and bound plasminogen and fibrinogen in a protruding 'cap'. These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for accumulation of fibrinolytic proteins that mediate fibrinolysis under flow.
Original language | English |
---|---|
Pages (from-to) | 2568 - 2578 |
Number of pages | 11 |
Journal | Blood |
Volume | 125 |
Issue number | 16 |
Early online date | 23 Feb 2015 |
DOIs | |
Publication status | Published - 16 Apr 2015 |
Bibliographical note
Copyright © 2015 American Society of Hematology.The authors thank the Microscopy and Histology Core Facility and the Iain Fraser Cytometry Centre at the University of Aberdeen for excellent advice and use of the facilities.
This work was supported by grants from the British Heart Foundation (FS/11/2/28579) (N.J.M., A.S.L.) and (PG/11/1/28461) (N.J.M., C.S.W.), the National Health Service Grampian Endowment (grant 14/43) (C.S.W., N.J.M.), Friends of Anchor (N.J.M.), the Landsteiner Foundation for Blood Transfusion Research (1006) (F.S., P.E.J.v.d.M., J.W.M.H.), and the Cardiovascular Centre Maastricht (F.S., P.E.J.v.d.M., J.W.M.H.). Travel for this project was supported by a grant from the British Society for Haemostasis and Thrombosis (N.J.M., C.S.W.).
Fingerprint
Dive into the research topics of 'Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow'. Together they form a unique fingerprint.Profiles
-
Nicola Mutch
- School of Medicine, Medical Sciences & Nutrition, Medical Sciences - Personal Chair
- School of Medicine, Medical Sciences & Nutrition, Cardiometabolic Disease
- School of Medicine, Medical Sciences & Nutrition, Aberdeen Cardiovascular and Diabetes Centre
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences
Person: Academic
Equipment
-
Iain Fraser Cytometry Centre
Duncan, L. (Senior Application Scientist), Laird, A. (Technician) & Burgoyne, K. (Technician)
Institute of Medical SciencesResearch Facilities: Facility