Requirement of Pax6 for the integration of guidance cues in cell migration

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
9 Downloads (Pure)


The intricate patterns of cell migration that are found throughout development are generated through a vast array of guidance cues. Responding integratively to distinct, often conflicting, migratory signals is likely crucial for cells to reach their correct destination. Pax6 is a master transcription factor with key roles in neural development that include the control of cell migration. In this study, we have investigated the ability of cells derived from cortical neurospheres from wild-type (WT) and Pax6-/- mouse embryos to integrate diverging guidance cues. We used two different cues, either separately or in combination: substratum nanogrooves to induce contact guidance, and electric fields (EFs) to induce electrotaxis. In the absence of an EF, both WT and Pax6-/- cells aligned and migrated parallel to grooves, and on a flat substrate both showed marked electrotaxis towards the cathode. When an EF was applied in a perpendicular orientation to grooves, WT cells responded significantly to both cues, migrating in highly oblique trajectories in the general direction of the cathode. However, Pax6-/- cells had an impaired response to both cues simultaneously. Our results demonstrate that these neurosphere derived cells have the capacity to integrate diverging guidance cues, which requires Pax6 function.
Original languageEnglish
Article number170625
JournalRoyal Society Open Science
Early online date4 Oct 2017
Publication statusPublished - 2017

Bibliographical note

Data accessibility. Cell trajectories data and a summary of directedness and angle values are deposited at Dryad:

MA was funded by an Alban International Research Studentship (code: E07D400602UY).


  • electrotaxis
  • contact guidance
  • neural progenitor
  • Pax6


Dive into the research topics of 'Requirement of Pax6 for the integration of guidance cues in cell migration'. Together they form a unique fingerprint.

Cite this